Partitions of Zn into arithmetic progressions

نویسندگان

  • William Y. C. Chen
  • David G. L. Wang
  • Iris F. Zhang
چکیده

We introduce the notion of arithmetic progression blocks or m-AP-blocks of Zn, which can be represented as sequences of the form (x, x+m,x+2m, . . . , x+ (i−1)m) (mod n). Then we consider the problem of partitioning Zn into m-APblocks. We show that subject to a technical condition, the number of partitions of Zn into m-AP-blocks of a given type is independent of m, and is equal to the cyclic multinomial coefficient which has occurred in Waring’s formula for symmetric functions. The type of such a partition of Zn is defined by the type of the underlying set partition. We give a combinatorial proof of this formula and the construction is called the separation algorithm. When we restrict our attention to blocks of sizes 1 and p+1, we are led to a combinatorial interpretation of a formula recently derived by Mansour and Sun as a generalization of the Kaplansky numbers. By using a variant of the cycle lemma, we extend the bijection to deal with an improvement of the technical condition recently given by Guo and Zeng.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On arithmetic partitions of Zn

Generalizing a classical problem in enumerative combinatorics, Mansour and Sun counted the number of subsets of Zn without certain separations. Chen, Wang, and Zhang then studied the problem of partitioning Zn into arithmetical progressions of a given type under some technical conditions. In this paper, we improve on their main theorems by applying a convolution formula for cyclic multinomial c...

متن کامل

On the Partitions of a Number into Arithmetic Progressions

The paper investigates the enumeration of the set AP(n) of partitions of a positive integer n in which the nondecreasing sequence of parts form an arithmetic progression. We establish formulas for such partitions, and characterize a class of integers n with the property that the length of every member of AP(n) divides n. We prove that the number of such integers is small.

متن کامل

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

Combinatorics of Integer Partitions in Arithmetic Progression

The partitions of a positive integer n in which the parts are in arithmetic progression possess interesting combinatorial properties that distinguish them from other classes of partitions. We exhibit the properties by analyzing partitions with respect to a fixed length of the arithmetic progressions. We also address an open question concerning the number of integers k for which there is a k-par...

متن کامل

Rainbow Arithmetic Progressions

In this paper, we investigate the anti-Ramsey (more precisely, anti-van der Waerden) properties of arithmetic progressions. For positive integers n and k, the expression aw([n], k) denotes the smallest number of colors with which the integers {1, . . . , n} can be colored and still guarantee there is a rainbow arithmetic progression of length k. We establish that aw([n], 3) = Θ(log n) and aw([n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2009